
Characterization of the membrane-bound form of the chimeric, B/C recombinant HIV-1 Env, LT5.J4b12C
Author(s) -
Supratik Das,
Manish Bansal,
Jayanta Bhattacharya
Publication year - 2018
Publication title -
journal of general virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.55
H-Index - 167
eISSN - 1465-2099
pISSN - 0022-1317
DOI - 10.1099/jgv.0.001141
Subject(s) - virology , biology , recombinant dna , virus , cleavage (geology) , antibody , human immunodeficiency virus (hiv) , chimera (genetics) , gene , genetics , paleontology , fracture (geology)
Human immunodeficiency virus 1 (HIV-1) diversity is a significant challenge in developing a vaccine against the virus. B/C recombinants have been found in India and other places but are the predominant clade prevalent in China. HIV-1 envelopes (Envs) are the target of broadly neutralizing antibodies (bNAbs) which develop spontaneously in some HIV-1 infected patients. It has been previously reported with efficiently cleaved clade A, B and C Envs that preferential binding of Envs to bNAbs as opposed to non-NAbs, a desirable property for immunogens, is correlated with efficient cleavage of the Env precursor polypeptide into constituent subunits. These Envs are suitable for designing immunogens as soluble proteins, virus-like particles or for delivery by viral vectors/plasmid DNA. However, a B/C recombinant Env with similar properties has not been reported. Here we show that the chimeric, recombinant B/C clade Env LT5.J4b12C is efficiently cleaved on the plasma membrane and selectively binds to bNAbs.