z-logo
open-access-imgOpen Access
Liposomes functionalized with fungi-targeting peptide demonstrate increased interaction with Candida albicans
Author(s) -
Ronnie LaMastro,
Noel VeraGonzález,
Kayla Campbell,
Anita Shukla
Publication year - 2021
Publication title -
access microbiology
Language(s) - English
Resource type - Journals
ISSN - 2516-8290
DOI - 10.1099/acmi.cc2021.po0180
Subject(s) - liposome , candida albicans , peptide , bioavailability , chemistry , amphotericin b , toxicity , pharmacology , biochemistry , biology , microbiology and biotechnology , antifungal , organic chemistry
Candida albicans infections can be challenging to treat, as current antifungal drugs exhibit poor water solubility and host toxicity. To overcome these issues, new methods of drug delivery are needed. Liposomes have been shown to be an effective method for administrating antifungals and can increase bioavailability and solubility while decreasing toxicity. However, existing antifungal liposomal formulations lack infection specificity. For example, AmBisome, a liposomal formulation of amphotericin B, relies on passive accumulation to infection sites. We have developed antifungal liposomes that display fungi-targeting moieties to promote interaction with Candida;we predict that these formulations can increase fungal eradication and decrease off-site toxicity. Here, the C. albicans -targeting peptide P-113Q2.10 (AQRHHGYKRQFH), a derivative of the antifungal peptide histatin 5, was incorporated into liposomes via conjugation to palmitic acid (PA). PA-P-113Q2.10 conjugates were synthesized using solid phase peptide synthesis, confirmed by liquid-chromatography-mass spectrometry. Liposomes composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and cholesterol with 1% w/w PA-P-113Q2.10 were formed via thin film-hydration and extrusion, yielding ∼100 nm liposomes with a polydispersity index of ∼0.1. Flow cytometry demonstrated that interaction with C. albicans SC5314 was enhanced for P-113Q2.10 liposomes, increasing from ∼60% in cells incubated with liposomes lacking peptide to ∼79%. These liposomes preferentially interact with C. albicans compared to NIH 3T3 murine fibroblasts; on average, only ∼15% of fibroblasts incubated with liposomes (with and without peptide) showed positive liposome interaction. This liposome formulation has the potential to serve as an antifungal delivery platform that selectively targets C. albicans cells for increased efficacy in treatment of fungal infections.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here