z-logo
open-access-imgOpen Access
The SKI complex is a broad-spectrum antiviral drug target
Author(s) -
Stuart Weston,
Chloe Keller,
Alexander D. MacKerell,
Matthew B. Frieman
Publication year - 2020
Publication title -
access microbiology
Language(s) - English
Resource type - Journals
ISSN - 2516-8290
DOI - 10.1099/acmi.ac2020.po0018
Subject(s) - biology , rna , viral replication , influenza a virus , in silico , helicase , virology , antiviral drug , rna interference , interferon , phenotype , microbiology and biotechnology , antiviral protein , virus , computational biology , genetics , gene
Starting from a yeast suppressor screening platform, we have identified the SKI complex as a potential broad-spectrum antiviral target. We found that the NS1 protein of influenza A virus (IAV) and the ORF4a protein of Middle East respiratory syndrome coronavirus (MERS-CoV), which both function to bind double-strand RNA and inhibit cellular interferon responses, cause a slow growth phenotype when expressed in yeast. Knockout of the components of the yeast SKI complex caused a loss of this slow growth phenotype, suggesting a functional link between the viral proteins and the SKI complex. The SKI complex is a helicase that unwinds double-strand RNA and sends it to the RNA exosome for degradation. We next investigated whether the highly conserved human SKI complex was important for replication of IAV and MERS-CoV. RNAi based experiments showed that both viruses were inhibited when the SKI complex was removed, suggesting the complex has a proviral role in replication. Through in silico modelling using the published crystal structure of the SKI complex, we looked for potential binding pockets for chemical compounds. We screened a selection of these compounds for antiviral activity and have found four different chemicals capable of inhibiting IAV infection. Our most studied of these also inhibits not only MERS-CoV, but also Ebolavirus Makona. Our data suggests the SKI complex may be a target for broad-spectrum antiviral therapy and we have multiple chemical structures from which to work to develop therapeutic approaches.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here