
Analysis of a Cas12a-based gene-drive system in budding yeast
Author(s) -
Isabel C. Lewis,
Yao Yan,
Gregory C. Finnigan
Publication year - 2021
Publication title -
access microbiology
Language(s) - English
Resource type - Journals
ISSN - 2516-8290
DOI - 10.1099/acmi.0.000301
Subject(s) - trans activating crrna , crispr , biology , cas9 , computational biology , genetics , guide rna , genome editing , gene , crispr interference
The discovery and adaptation of CRISPR/Cas systems within molecular biology has provided advances across biological research, agriculture and human health. Genomic manipulation through use of a CRISPR nuclease and programmed guide RNAs has become a common and widely accessible practice. The identification and introduction of new engineered variants and orthologues of Cas9 as well as alternative CRISPR systems such as the type V group have provided additional molecular options for editing. These include distinct PAM requirements, staggered DNA double-strand break formation, and the ability to multiplex guide RNAs from a single expression construct. Use of CRISPR/Cas has allowed for the construction and testing of a powerful genetic architecture known as a gene drive within eukaryotic model systems. Our previous work developed a drive within budding yeast using Streptococcus pyogenes Cas9. Here, we installed the type V Francisella novicida Cas12a (Cpf1) nuclease gene and its corresponding guide RNA to power a highly efficient artificial gene drive in diploid yeast. We examined the consequence of altering guide length or introduction of individual mutational substitutions to the crRNA sequence. Cas12a-dependent gene-drive function required a guide RNA of at least 18 bp and could not tolerate most changes within the 5′ end of the crRNA.