
The role of SEF14 and SEF17 fimbriae in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces
Author(s) -
Martin J. Woodward,
Marcjanna Sojka,
K. A. Sprigings,
Tom J. Humphrey
Publication year - 2000
Publication title -
journal of medical microbiology/journal of medical microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.91
H-Index - 117
eISSN - 1473-5644
pISSN - 0022-2615
DOI - 10.1099/0022-1317-49-5-481
Subject(s) - fimbria , microbiology and biotechnology , serotype , pilus , flagellum , salmonella enteritidis , salmonella enterica , biology , bacteria , salmonella , antigen , enterobacteriaceae , mutant , escherichia coli , immunology , gene , biochemistry , genetics
To gain an understanding of the role of fimbriae and flagella in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces, the extent of adherence of viable wild-type strains to a polystyrene microtitration plate was determined by a crystal violet staining assay. Elaboration of surface antigens by adherent bacteria was assayed by fimbriae- and flagella-specific ELISAs. Wild-type Enteritidis strains adhered well at 37 degrees C and 25 degrees C when grown in microtitration wells in Colonisation Factor Antigen broth, but not in other media tested. At 37 degrees C, adherent bacteria elaborated copious quantities of SEF14 fimbrial antigen, whereas at 25 degrees C adherent bacteria elaborated copious quantities of SEF17 fimbrial antigen. Non-fimbriate and non-flagellate knock-out mutant strains were also assessed in the adherence assay. Mutant strains unable to elaborate SEF14 and SEF17 fimbriae adhered poorly at 37 degrees C and 25 degrees C, respectively, but adherence was not abolished. Non-motile mutant strains showed reduced adherence whilst type-1, PEF and LPF fimbriae appeared not to contribute to adherence in this assay. These data indicate that SEF17 and SEF14 fimbriae mediate bacterial cell aggregation on inanimate surfaces under appropriate growth conditions.