
Super-resolution microscopy: a brief history and new avenues
Author(s) -
Kirti Prakash,
Benedict Diederich,
Rainer Heintzmann,
Lothar Schermelleh
Publication year - 2022
Publication title -
philosophical transactions - royal society. mathematical, physical and engineering sciences/philosophical transactions - royal society. mathematical, physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2021.0110
Subject(s) - resolution (logic) , computer science , microscopy , nanotechnology , superresolution , super resolution microscopy , data science , artificial intelligence , optics , materials science , physics , scanning confocal electron microscopy , image (mathematics)
Super-resolution microscopy (SRM) is a fast-developing field that encompasses fluorescence imaging techniques with the capability to resolve objects below the classical diffraction limit of optical resolution. Acknowledged with the Nobel prize in 2014, numerous SRM methods have meanwhile evolved and are being widely applied in biomedical research, all with specific strengths and shortcomings. While some techniques are capable of nanometre-scale molecular resolution, others are geared towards volumetric three-dimensional multi-colour or fast live-cell imaging. In this editorial review, we pick on the latest trends in the field. We start with a brief historical overview of both conceptual and commercial developments. Next, we highlight important parameters for imaging successfully with a particular super-resolution modality. Finally, we discuss the importance of reproducibility and quality control and the significance of open-source tools in microscopy. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.