Impact force and moment problems on random mass density fields with fractal and Hurst effects
Author(s) -
Xian Zhang,
Martin OstojaStarzewski
Publication year - 2020
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2019.0591
Subject(s) - fractal , random field , fractal dimension , randomness , isotropy , hurst exponent , mathematics , mathematical analysis , statistical physics , stochastic process , moment (physics) , physics , classical mechanics , statistics , optics
This paper reports the application of cellular automata to study the dynamic responses of Lamb-type problems for a tangential point load and a concentrated moment applied on the free surface of a half-plane. The medium is homogeneous, isotropic and linear elastic while having a random mass density field with fractal and Hurst characteristics. Both Cauchy and Dagum random field models are used to capture these effects. First, the cellular automata approach is tested on progressively finer meshes to verify the code against the continuum elastodynamic solution in a homogeneous continuum. Then, the sensitivity of wave propagation on random fields is assessed for a wide range of fractal and Hurst parameters. Overall, the mean response amplitude is lowered by the mass density field’s randomness, while the Hurst parameter (especially, forβ < 0.2) is found to have a stronger influence than the fractal dimension on the response. The resulting Rayleigh wave is modified more than the pressure wave for the same random field parameters. Additionally, comparisons with previously studied Lamb-type problems under normal in-plane and anti-plane loadings are given.This article is part of the theme issue ‘Advanced materials modelling via fractional calculus: challenges and perspectives’.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom