z-logo
open-access-imgOpen Access
Carrierless amplitude and phase modulation in wireless visible light communication systems
Author(s) -
N. Bamiedakis,
Richard V. Penty,
I.H. White
Publication year - 2020
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2019.0181
Subject(s) - visible light communication , computer science , electronic engineering , light emitting diode , modulation (music) , bandwidth (computing) , wireless , optical wireless , context (archaeology) , transmission (telecommunications) , data transmission , telecommunications , engineering , electrical engineering , computer network , physics , paleontology , acoustics , biology
Visible light communications (VLCs) have attracted considerable interest in recent years owing to the potential to simultaneously achieve data transmission and illumination using low-cost light-emitting diodes (LEDs). However, the high-speed capability of such links is typically limited by the low bandwidth of LEDs. As a result, spectrally efficient advanced modulation formats have been considered for use in VLC links in order to mitigate this issue and enable higher data rates. Carrierless amplitude and phase (CAP) modulation is one such spectrally efficient scheme that has attracted significant interest in recent years owing to its good potential and practical implementation. In this paper, we introduce the basic features of CAP modulation and review its use in the context of indoor VLC systems. We describe some of its attributes and inherent limitations, present related advances aiming to improve its performance and potential and report on recent experimental demonstrations of LED-based VLC links employing CAP modulation. This article is part of the theme issue ‘Optical wireless communication’.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom