
A fast pace-of-life is traded off against a high thermal performance
Author(s) -
Nedim Tüzün,
Robby Stoks
Publication year - 2022
Publication title -
proceedings - royal society. biological sciences/proceedings - royal society. biological sciences
Language(s) - English
Resource type - Journals
eISSN - 1471-2954
pISSN - 0962-8452
DOI - 10.1098/rspb.2021.2414
Subject(s) - pace , latitude , trait , boldness , biology , larva , ecology , zoology , geography , computer science , psychology , social psychology , geodesy , personality , programming language
The integration of life-history, behavioural and physiological traits into a ‘pace-of-life syndrome’ is a powerful concept in understanding trait variation in nature. Yet, mechanisms maintaining variation in ‘pace-of-life’ are not well understood. We tested whether decreased thermal performance is an energetic cost of a faster pace-of-life. We characterized the pace-of-life of larvae of the damselflyIschnura elegans from high-latitude and low-latitude regions when reared at 20°C or 24°C in a common-garden experiment, and estimated thermal performance curves for a set of behavioural, physiological and performance traits. Our results confirm a faster pace-of-life (i.e. faster growth and metabolic rate, more active and bold behaviour) in the low-latitude and in warm-reared larvae, and reveal increased maximum performance,R max , but not thermal optimumT opt , in low-latitude larvae. Besides a clear pace-of-life syndrome integration at the individual level, larvae also aligned along a ‘cold–hot’ axis. Importantly, a faster pace-of-life correlated negatively with a high thermal performance (i.e. higherT opt for swimming speed, metabolic rate, activity and boldness), which was consistent across latitudes and rearing temperatures. This trade-off, potentially driven by the energetically costly maintenance of a fast pace-of-life, may be an alternative mechanism contributing to the maintenance of variation in pace-of-life within populations.