z-logo
open-access-imgOpen Access
Turning turtle: scaling relationships and self-righting ability in Chelydra serpentina
Author(s) -
Ilan Ruhr,
Kayleigh A. R. Rose,
William I. Sellers,
Dane A. Crossley,
Jonathan R. Codd
Publication year - 2021
Publication title -
proceedings - royal society. biological sciences/proceedings - royal society. biological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.342
H-Index - 253
eISSN - 1471-2954
pISSN - 0962-8452
DOI - 10.1098/rspb.2021.0213
Subject(s) - chelydra , turtle (robot) , anatomy , biomechanics , biology , ecology
Testudines are susceptible to inversion and self-righting using their necks, limbs or both, to generate enough mechanical force to flip over. We investigated how shell morphology, neck length and self-righting biomechanics scale with body mass during ontogeny in Chelydra serpentina , which uses neck-powered self-righting. We found that younger turtles flipped over twice as fast as older individuals. A simple geometric model predicted the relationships of shell shape and self-righting time with body mass. Conversely, neck force, power output and kinetic energy increase with body mass at rates greater than predicted. These findings were correlated with relatively longer necks in younger turtles than would be predicted by geometric similarity. Therefore, younger turtles self-right with lower biomechanical costs than predicted by simple scaling theory. Considering younger turtles are more prone to inverting and their shells offer less protection, faster and less costly self-righting would be advantageous in overcoming the detriments of inversion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here