z-logo
open-access-imgOpen Access
Viscous froth model applied to the motion and topological transformations of two-dimensional bubbles in a channel: three-bubble case
Author(s) -
Carlos Torres-Ulloa,
Paul Grassia
Publication year - 2022
Publication title -
proceedings - royal society. mathematical, physical and engineering sciences
Language(s) - English
Resource type - Journals
eISSN - 1471-2946
pISSN - 1364-5021
DOI - 10.1098/rspa.2021.0642
Subject(s) - bubble , mechanics , curvature , drag , surface tension , classical mechanics , physics , topology (electrical circuits) , geometry , mathematics , thermodynamics , combinatorics
The viscous froth model is used to predict rheological behaviour of a two-dimensional (2D) liquid-foam system. The model incorporates three physical phenomena: the viscous drag force, the pressure difference across foam films and the surface tension acting along them with curvature. In the so-called infinite staircase structure, the system does not undergo topological bubble neighbour-exchange transformations for any imposed driving back pressure. Bubbles then flow out of the channel of transport in the same order in which they entered it. By contrast, in a simple single bubble staircase or so-called lens system, topological transformations do occur for high enough imposed back pressures. The three-bubble case interpolates between the infinite staircase and simple staircase/lens. To determine at which driving pressures and at which velocities topological transformations might occur, and how the bubble areas influence their occurrence, steady-state propagating three-bubble solutions are obtained for a range of bubble sizes and imposed back pressures. As an imposed back pressure increases quasi-statically from equilibrium, complex dynamics are exhibited as the systems undergo either topological transformations, reach saddle-node bifurcation points, or asymptote to a geometrically invariant structure which ceases to change as the back pressure is further increased.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here