Nonlinear generalized functions on manifolds
Author(s) -
Eduard A. Nigsch,
James Vickers
Publication year - 2020
Publication title -
proceedings of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
eISSN - 1471-2946
pISSN - 1364-5021
DOI - 10.1098/rspa.2020.0640
Subject(s) - covariant derivative , lie derivative , mathematics , generalized function , covariant transformation , differential geometry , scalar (mathematics) , generalization , nonlinear system , smoothing , pure mathematics , lie algebra , schwarzian derivative , tensor (intrinsic definition) , algebra over a field , mathematical analysis , geometry , adjoint representation of a lie algebra , physics , lie conformal algebra , quantum mechanics , statistics
In this work, we adopt a new approach to the construction of a global theory of algebras of generalized functions on manifolds based on the concept of smoothing operators. This produces a generalization of previous theories in a form which is suitable for applications to differential geometry. The generalized Lie derivative is introduced and shown to extend the Lie derivative of Schwartz distributions. A new feature of this theory is the ability to define a covariant derivative of generalized scalar fields which extends the covariant derivative of distributions at the level of association. We end by sketching some applications of the theory. This work also lays the foundations for a nonlinear theory of distributional geometry that is developed in a subsequent paper that is based on Colombeau algebras of tensor distributions on manifolds.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom