z-logo
open-access-imgOpen Access
Static and dynamic formant scaling conveys body size and aggression
Author(s) -
Andrey Anikin,
Katarzyna Pisanski,
David Reby
Publication year - 2022
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.211496
Subject(s) - formant , vocal tract , psychology , perception , audiology , acoustics , aggression , communication , speech recognition , computer science , physics , vowel , developmental psychology , medicine , neuroscience
When producing intimidating aggressive vocalizations, humans and other animals often extend their vocal tracts to lower their voice resonance frequencies (formants) and thus sound big. Is acoustic size exaggeration more effective when the vocal tract is extended before, or during, the vocalization, and how do listeners interpret within-call changes in apparent vocal tract length? We compared perceptual effects of static and dynamic formant scaling in aggressive human speech and nonverbal vocalizations. Acoustic manipulations corresponded to elongating or shortening the vocal tract either around (Experiment 1) or from (Experiment 2) its resting position. Gradual formant scaling that preserved average frequencies conveyed the impression of smaller size and greater aggression, regardless of the direction of change. Vocal tract shortening from the original length conveyed smaller size and less aggression, whereas vocal tract elongation conveyed larger size and more aggression, and these effects were stronger for static than for dynamic scaling. Listeners familiarized with the speaker's natural voice were less often ‘fooled’ by formant manipulations when judging speaker size, but paid more attention to formants when judging aggressive intent. Thus, within-call vocal tract scaling conveys emotion, but a better way to sound large and intimidating is to keep the vocal tract consistently extended.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here