Open Access
Comparison between the kinematics for kangaroo rat hopping on a solid versus sand surface
Author(s) -
Joseph K. Hall,
Craig P. McGowan,
David C. Lin
Publication year - 2022
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.211491
Subject(s) - kinematics , substrate (aquarium) , duty cycle , materials science , homing (biology) , habitat , ecology , biology , anatomy , physics , classical mechanics , quantum mechanics , power (physics)
In their natural habitats, animals move on a variety of substrates, ranging from solid surfaces to those that yield and flow (e.g. sand). These substrates impose different mechanical demands on the musculoskeletal system and may therefore elicit different locomotion patterns. The goal of this study is to compare bipedal hopping by desert kangaroo rats (Dipodomys deserti) on a solid versus granular substrate under speed-controlled conditions. To accomplish this goal, we developed a rotary treadmill, which is able to have different substrates or uneven surfaces. We video recorded six kangaroo rats hopping on a solid surface versus sand at the same speed (1.8 m s−1 ) and quantified the differences in the hopping kinematics between the two substrates. We found no significant differences in the hop period, hop length or duty cycle, showing that the gross kinematics on the two substrates were similar. This similarity was surprising given that sand is a substrate that absorbs mechanical energy. Measurements of the penetration resistance of the sand showed that the combination of the sand properties, toe-print area and kangaroo rat weight was probably the reason for the similarity.