A Bayesian method for synthesizing multiple diagnostic outcomes of COVID-19 tests
Author(s) -
Lirong Cao,
Shi Zhao,
Qi Li,
Lowell Ling,
William Ka Kei Wu,
Lin Zhang,
Jingzhi Lou,
Ka Chun Chong,
Zigui Chen,
Eliza LaiYi Wong,
Benny Zee,
Matthew T.V. Chan,
Paul K.S. Chan,
Maggie Haitian Wang
Publication year - 2021
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.201867
Subject(s) - bayesian probability , computer science , outcome (game theory) , covid-19 , machine learning , probabilistic logic , posterior probability , sensitivity (control systems) , diagnostic test , artificial intelligence , data mining , medicine , disease , mathematics , engineering , pathology , infectious disease (medical specialty) , emergency medicine , mathematical economics , electronic engineering
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom