
A comparative study on phosphate removal from water using Phragmites australis biochars loaded with different metal oxides
Author(s) -
Pengfei Wang,
Mengmeng Zhi,
Guannan Cui,
Zhaosheng Chu,
Shuhang Wang
Publication year - 2021
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.201789
Subject(s) - phosphate , adsorption , biochar , chemistry , nuclear chemistry , metal , oxide , phragmites , pyrolysis , organic chemistry , ecology , wetland , biology
Metal oxide-loaded biochars are a promising material to remove phosphate from polluted water to ultra-low concentrations. To facilitate preparing the metal oxide-loaded biochar with the best phosphate adsorption performance, five biochars loaded with Al, Ca, Fe, La and Mg oxides, respectively (Al-BC, Ca-BC, Fe-BC, La-BC and Mg-BC) were produced using Phragmites australis pretreated with 0.1 mol AlCl 3 , CaCl 2 , FeCl 3 , LaCl 3 and MgCl 2 , respectively, characterized, and phosphate adsorption kinetics and isotherms of the biochars were determined. The maximum phosphate adsorption capacities ( Q m ) of the biochars ranked as Al-BC (219.87 mg g −1 ) > Mg-BC (112.45 mg g −1 ) > Ca-BC (81.46 mg g −1 ) > Fe-BC (46.61 mg g −1 ) > La-BC (38.93 mg g −1 ). The time to reach the adsorption equilibrium ranked as La-BC (1 h) < Ca-BC (12 h) < Mg-BC (24 h) = Fe-BC (24 h)