z-logo
open-access-imgOpen Access
A comparative study on phosphate removal from water using Phragmites australis biochars loaded with different metal oxides
Author(s) -
Pengfei Wang,
Mengmeng Zhi,
Guannan Cui,
Zhaosheng Chu,
Shuhang Wang
Publication year - 2021
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.201789
Subject(s) - phragmites , phosphate , metal , environmental chemistry , environmental science , wetland , chemistry , ecology , materials science , biology , metallurgy , organic chemistry
Metal oxide-loaded biochars are a promising material to remove phosphate from polluted water to ultra-low concentrations. To facilitate preparing the metal oxide-loaded biochar with the best phosphate adsorption performance, five biochars loaded with Al, Ca, Fe, La and Mg oxides, respectively (Al-BC, Ca-BC, Fe-BC, La-BC and Mg-BC) were produced using Phragmites australis pretreated with 0.1 mol AlCl 3 , CaCl 2 , FeCl 3 , LaCl 3 and MgCl 2 , respectively, characterized, and phosphate adsorption kinetics and isotherms of the biochars were determined. The maximum phosphate adsorption capacities ( Q m ) of the biochars ranked as Al-BC (219.87 mg g −1 ) > Mg-BC (112.45 mg g −1 ) > Ca-BC (81.46 mg g −1 ) > Fe-BC (46.61 mg g −1 ) > La-BC (38.93 mg g −1 ). The time to reach the adsorption equilibrium ranked as La-BC (1 h) < Ca-BC (12 h) < Mg-BC (24 h) = Fe-BC (24 h)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom