z-logo
open-access-imgOpen Access
Early warning of some notifiable infectious diseases in China by the artificial neural network
Author(s) -
Zuiyuan Guo,
Kevin He,
Dingquan Xiao
Publication year - 2020
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.191420
Subject(s) - artificial neural network , warning system , artificial intelligence , computer science , test set , infectious disease (medical specialty) , machine learning , medicine , pathology , disease , telecommunications
In order to accurately grasp the timing for the prevention and control of diseases, we established an artificial neural network model to issue early warning signals. The real-time recurrent learning (RTRL) and extended Kalman filter (EKF) methods were performed to analyse four types of respiratory infectious diseases and four types of digestive tract infectious diseases in China to comprehensively determine the epidemic intensities and whether to issue early warning signals. The numbers of new confirmed cases per month between January 2004 and December 2017 were used as the training set; the data from 2018 were used as the test set. The results of RTRL showed that the number of new confirmed cases of respiratory infectious diseases in September 2018 increased abnormally. The results of the EKF showed that the number of new confirmed cases of respiratory infectious diseases increased abnormally in January and February of 2018. The results of these two algorithms showed that the number of new confirmed cases of digestive tract infectious diseases in the test set did not have any abnormal increases. The neural network and machine learning can further enrich and develop the early warning theory.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here