
The supernumerary B chromosome of maize: drive and genomic conflict
Author(s) -
James A. Birchler,
Hua Yang
Publication year - 2021
Publication title -
open biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.078
H-Index - 53
ISSN - 2046-2441
DOI - 10.1098/rsob.210197
Subject(s) - biology , b chromosome , nondisjunction , genetics , chromosome 21 , chromosome , supernumerary , mitosis , meiosis , gene , karyotype , aneuploidy , anatomy
The supernumerary B chromosome of maize is dispensable, containing no vital genes, and thus is variable in number and presence in lines of maize. In order to be maintained in populations, it has a drive mechanism consisting of nondisjunction at the pollen mitosis that produces the two sperm cells, and then the sperm with the two B chromosomes has a preference for fertilizing the egg as opposed to the central cell in the process of double fertilization. The sequence of the B chromosome coupled with B chromosomal aberrations has localized features involved with nondisjunction and preferential fertilization, which are present at the centromeric region. The predicted genes from the sequence have paralogues dispersed across all A chromosomes and have widely different divergence times suggesting that they have transposed to the B chromosome over evolutionary time followed by degradation or have been co-opted for the selfish functions of the supernumerary chromosome.