
Improve automatic detection of animal call sequences with temporal context
Author(s) -
Shyam Madhusudhana,
Yu Shiu,
Holger Klinck,
Erica Fleishman,
Xiaobai Liu,
EvaMarie Nosal,
Tyler A. Helble,
Danielle Cholewiak,
Douglas Gillespie,
Ana Širović,
Marie A. Roch
Publication year - 2021
Publication title -
journal of the royal society interface
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.655
H-Index - 139
eISSN - 1742-5689
pISSN - 1742-5662
DOI - 10.1098/rsif.2021.0297
Subject(s) - computer science , convolutional neural network , context (archaeology) , artificial intelligence , deep learning , machine learning , speech recognition , pattern recognition (psychology) , biology , paleontology
Many animals rely on long-form communication, in the form of songs, for vital functions such as mate attraction and territorial defence. We explored the prospect of improving automatic recognition performance by using the temporal context inherent in song. The ability to accurately detect sequences of calls has implications for conservation and biological studies. We show that the performance of a convolutional neural network (CNN), designed to detect song notes (calls) in short-duration audio segments, can be improved by combining it with a recurrent network designed to process sequences of learned representations from the CNN on a longer time scale. The combined system of independently trained CNN and long short-term memory (LSTM) network models exploits the temporal patterns between song notes. We demonstrate the technique using recordings of fin whale ( Balaenoptera physalus ) songs, which comprise patterned sequences of characteristic notes. We evaluated several variants of the CNN + LSTM network. Relative to the baseline CNN model, the CNN + LSTM models reduced performance variance, offering a 9–17% increase in area under the precision–recall curve and a 9–18% increase in peak F1-scores. These results show that the inclusion of temporal information may offer a valuable pathway for improving the automatic recognition and transcription of wildlife recordings.