z-logo
open-access-imgOpen Access
On the relationship between serial interval, infectiousness profile and generation time
Author(s) -
Sonja Lehtinen,
Peter Ashcroft,
Sebastian Bonhoeffer
Publication year - 2021
Publication title -
journal of the royal society interface
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.655
H-Index - 139
eISSN - 1742-5689
pISSN - 1742-5662
DOI - 10.1098/rsif.2020.0756
Subject(s) - interval (graph theory) , controllability , generation time , statistics , variance (accounting) , mathematics , transmission (telecommunications) , distribution (mathematics) , set (abstract data type) , computer science , population , medicine , mathematical analysis , telecommunications , environmental health , accounting , combinatorics , business , programming language
The timing of transmission plays a key role in the dynamics and controllability of an epidemic. However, observing generation times—the time interval between the infection of an infector and an infectee in a transmission pair—requires data on infection times, which are generally unknown. The timing of symptom onset is more easily observed; generation times are therefore often estimated based on serial intervals—the time interval between symptom onset of an infector and an infectee. This estimation follows one of two approaches: (i) approximating the generation time distribution by the serial interval distribution or (ii) deriving the generation time distribution from the serial interval and incubation period—the time interval between infection and symptom onset in a single individual—distributions. These two approaches make different—and not always explicitly stated—assumptions about the relationship between infectiousness and symptoms, resulting in different generation time distributions with the same mean but unequal variances. Here, we clarify the assumptions that each approach makes and show that neither set of assumptions is plausible for most pathogens. However, the variances of the generation time distribution derived under each assumption can reasonably be considered as upper (approximation with serial interval) and lower (derivation from serial interval) bounds. Thus, we suggest a pragmatic solution is to use both approaches and treat these as edge cases in downstream analysis. We discuss the impact of the variance of the generation time distribution on the controllability of an epidemic through strategies based on contact tracing, and we show that underestimating this variance is likely to overestimate controllability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here