Open Access
Mobile device location data reveal human mobility response to state-level stay-at-home orders during the COVID-19 pandemic in the USA
Author(s) -
Chenfeng Xiong,
Songhua Hu,
Mofeng Yang,
Hannah Younes,
Weiyu Luo,
Sepehr Ghader,
Lei Zhang
Publication year - 2020
Publication title -
journal of the royal society interface
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.655
H-Index - 139
eISSN - 1742-5689
pISSN - 1742-5662
DOI - 10.1098/rsif.2020.0344
Subject(s) - pandemic , government (linguistics) , analytics , covid-19 , population , census , geography , computer science , business , demography , data science , medicine , sociology , linguistics , philosophy , disease , pathology , infectious disease (medical specialty)
One approach to delaying the spread of the novel coronavirus (COVID-19) is to reduce human travel by imposing travel restriction policies. Understanding the actual human mobility response to such policies remains a challenge owing to the lack of an observed and large-scale dataset describing human mobility during the pandemic. This study uses an integrated dataset, consisting of anonymized and privacy-protected location data from over 150 million monthly active samples in the USA, COVID-19 case data and census population information, to uncover mobility changes during COVID-19 and under the stay-at-home state orders in the USA. The study successfully quantifies human mobility responses with three important metrics: daily average number of trips per person; daily average person-miles travelled; and daily percentage of residents staying at home. The data analytics reveal a spontaneous mobility reduction that occurred regardless of government actions and a ‘floor’ phenomenon, where human mobility reached a lower bound and stopped decreasing soon after each state announced the stay-at-home order. A set of longitudinal models is then developed and confirms that the states' stay-at-home policies have only led to about a 5% reduction in average daily human mobility. Lessons learned from the data analytics and longitudinal models offer valuable insights for government actions in preparation for another COVID-19 surge or another virus outbreak in the future.