
Elevated CO 2 modulates airway contractility
Author(s) -
Masahiko Shigemura,
Jacob I. Sznajder
Publication year - 2021
Publication title -
interface focus
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 49
eISSN - 2042-8901
pISSN - 2042-8898
DOI - 10.1098/rsfs.2020.0021
Subject(s) - hypercapnia , contractility , lung , medicine , pathophysiology , airway , cardiology , respiratory system , anesthesia
Carbon dioxide (CO 2 ), a primary product of oxidative metabolism, can be sensed by eukaryotic cells eliciting unique responses via specific signalling pathways. Severe lung diseases such as chronic obstructive pulmonary disease are associated with hypoventilation that can lead to the elevation of CO 2 levels in lung tissues and the bloodstream (hypercapnia). However, the pathophysiological effects of hypercapnia on the lungs and specific lung cells are incompletely understood. We have recently reported using combined unbiased molecular approaches with studies in mice and cell culture systems on the mechanisms by which hypercapnia alters airway smooth muscle contractility. In this review, we provide a pathophysiological and mechanistic perspective on the effects of hypercapnia on the lung airways and discuss the recent understanding of high CO 2 modulation of the airway contractility.