Convergent dental adaptations in the serrations of hypercarnivorous synapsids and dinosaurs
Author(s) -
Megan R. Whitney,
Aaron R. H. LeBlanc,
Ashley R. Reynolds,
Kirstin S. Brink
Publication year - 2020
Publication title -
biology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.596
H-Index - 110
eISSN - 1744-957X
pISSN - 1744-9561
DOI - 10.1098/rsbl.2020.0750
Subject(s) - biology , dentition , interdental consonant , convergent evolution , paleontology , evolutionary biology , anatomy , phylogenetic tree , philosophy , linguistics , biochemistry , gene
Theropod dinosaurs are well known for having a ziphodont dentition: serrated, blade-shaped teeth that they used for cutting through prey. Serrations along the carinae of theropod teeth are composed of true denticles, a complex arrangement of dentine, enamel, and interdental folds. This structure would have supported individual denticles and dissipated the stresses associated with feeding. These particular serrations were previously thought to be unique to theropod dinosaurs and some other archosaurs. Here, we identify the same denticles and interdental folds forming the cutting edges in the teeth of a Permian gorgonopsian synapsid, extending the temporal and phylogenetic distribution of this dental morphology. This remarkable instance of convergence not only represents the earliest record of this adaptation to hypercarnivory but also demonstrates that the first iteration of this feature appeared in non-mammalian synapsids. Comparisons of tooth serrations in gorgonopsians with those of earlier synapsids and hypercarnivorous mammals reveal some gorgonopsians acquired a complex tissue arrangement that differed from other synapsids.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom