z-logo
open-access-imgOpen Access
Rapid morphological divergence of a stream fish in response to changes in water flow
Author(s) -
James C. Cureton,
Richard E. Broughton
Publication year - 2014
Publication title -
biology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.596
H-Index - 110
eISSN - 1744-957X
pISSN - 1744-9561
DOI - 10.1098/rsbl.2014.0352
Subject(s) - biology , phenotypic plasticity , habitat , ecology , streams , divergence (linguistics) , natural selection , environmental change , selection (genetic algorithm) , climate change , computer network , linguistics , philosophy , artificial intelligence , computer science
Recent evidence indicates that evolution can occur on a contemporary time scale. However, the precise timing and patterns of phenotypic change are not well known. Reservoir construction severely alters selective regimes in aquatic habitats due to abrupt cessation of water flow. We examined the spatial and temporal patterns of evolution of a widespread North American stream fish (Pimephales vigilax ) in response to stream impoundment. Gross morphological changes occurred inP. vigilax populations following dam construction in each of seven different rivers. Significant changes in body depth, head shape and fin placement were observed relative to fish populations that occupied the rivers prior to dam construction. These changes occurred over a very small number of generations and independent populations exhibited common responses to similar selective pressures. The magnitude of change was observed to be greatest in the first 15 generations post-impoundment, followed by continued but more gradual change thereafter. This pattern suggests early directional selection facilitated by phenotypic plasticity in the first 10–20 years, followed by potential stabilizing selection as populations reached a new adaptive peak (or variation became exhausted). This study provides evidence for rapid, apparently adaptive, phenotypic divergence of natural populations due to major environmental perturbations in a changing world.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom