
Quantitative Image Analysis at Chronic Lung Allograft Dysfunction Onset Predicts Mortality
Author(s) -
S. Samuel Weigt,
Hyun J Kim,
Heather D. Jones,
Allison Ramsey,
Olawale Amubieya,
Fereidoun Abtin,
Lila Pourzand,
Jihey Lee,
Michael Y. Shino,
Ariss Derhovanessian,
Barry R. Stripp,
Paul W. Noble,
David M. Sayah,
Rajan Saggar,
Ian Britton,
Joseph P. Lynch,
John A. Belperio,
Jonathan G. Goldin
Publication year - 2022
Publication title -
transplantation
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.45
H-Index - 204
eISSN - 1534-6080
pISSN - 0041-1337
DOI - 10.1097/tp.0000000000003950
Subject(s) - medicine , air trapping , bronchiolitis obliterans , lung , interstitial lung disease , bronchiolitis , pathology , gastroenterology , radiology , lung transplantation , respiratory system
Chronic lung allograft dysfunction (CLAD) phenotype determines prognosis and may have therapeutic implications. Despite the clarity achieved by recent consensus statement definitions, their reliance on radiologic interpretation introduces subjectivity. The Center for Computer Vision and Imaging Biomarkers at the University of California, Los Angeles (UCLA) has established protocols for chest high-resolution computed tomography (HRCT)-based computer-aided quantification of both interstitial disease and air-trapping. We applied quantitative image analysis (QIA) at CLAD onset to demonstrate radiographic phenotypes with clinical implications.