z-logo
open-access-imgOpen Access
NOVEL OVINE MODEL OF METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS-INDUCED PNEUMONIA AND SEPSIS
Author(s) -
Perenlei Enkhbaatar,
Collette Joncam,
Lillian D. Traber,
Yoshimitsu Nakano,
Jianpu Wang,
Matthias Lange,
Rhykka L Connelly,
Gabriela A. Kulp,
Fiona Saunders,
Ruksana Huda,
Robert A. Cox,
F. C. Schmalstieg,
David N. Herndon,
Daniel L. Traber
Publication year - 2008
Publication title -
shock
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 117
eISSN - 1540-0514
pISSN - 1073-2322
DOI - 10.1097/shk.0b013e318158125b
Subject(s) - medicine , anesthesia , pneumonia , sepsis , methicillin resistant staphylococcus aureus , smoke inhalation , staphylococcus aureus , mechanical ventilation , inhalation , biology , bacteria , genetics
Methicillin-resistant Staphylococcus aureus (MRSA)-related pneumonia and/or sepsis are a frequent serious menace. The aim of the study was to establish a standardized and reproducible model of MRSA-induced septic pneumonia to evaluate new therapies. Sheep were operatively prepared for chronic study. After 5 days' recovery, tracheostomy was performed under anesthesia, and smoke injury was induced by inhalation of cotton smoke (48 breaths, <40 degrees C). Methicillin-resistant S. aureus (AW6) (approximately 2.5x10(11) colony-forming units) was instilled into the airway by a bronchoscope. After the injury, animals were awakened and maintained on mechanical ventilation by 100% oxygen for first 3 h, and thereafter, oxygen concentration was adjusted according to blood gases. The sheep were resuscitated by lactated Ringer solution with an initial rate of 2 mL kg(-1) h(-1) that was further adjusted according to hematocrit. Study groups include (1) sham (noninjured, nontreated; n=6), (2) S+MRSA (exposed to smoke inhalation and MRSA, nontreated; n=6), and (3) smoke (exposed to smoke inhalation alone; n=6). Injured (S+MRSA) animals showed the signs of severe sepsis-related multiple organ failure 3 h after insult. Cardiovascular morbidity was evidenced by severe hypotension, with increased heart rate, cardiac output, left atrial pressure and severely decreased systemic vascular resistance index, and left ventricle stroke work index. Pulmonary dysfunction was characterized by deteriorated gas exchange (PaO2/FIO2 and pulmonary shunt) and increased ventilatory pressures. The S+MRSA group showed significantly greater lung tissue water content, myeloperoxidase activity, and cytokine production compared with uninjured sham animals. Microvascular hyperpermeability was evidenced by marked fluid retention (fluid net balance), decreased plasma protein with decreased plasma oncotic pressure, and increased pulmonary microvascular pressure. All these changes were accompanied by 6- to 7-fold increase in plasma nitrite/nitrate and increased production of reactive nitrogen species in lung. The smoke inhalation alone had a little or no effect on these variables. This model closely mimics hyperdynamic human sepsis. The excessive production of NO may be extensively involved in the pathogenic process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here