
Effects of Acute Subdural Hematoma-Induced Brain Injury On Energy Metabolism in Peripheral Blood Mononuclear Cells
Author(s) -
Fabian Zink,
J. Vogt,
Ulrich Wachter,
Jens Hartert,
Mirco Horchler,
Xiaomin Zhang,
Felix Hezel,
Thomas Kapapa,
Thomas Datzmann,
Andrea Hoffmann,
Martin Wepler,
Enrico Calzia,
Peter Radermacher,
Clair Hartmann
Publication year - 2020
Publication title -
shock
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 117
eISSN - 1540-0514
pISSN - 1073-2322
DOI - 10.1097/shk.0000000000001642
Subject(s) - peripheral blood mononuclear cell , chemistry , metabolism , citric acid cycle , cellular respiration , glycolysis , biology , biochemistry , mitochondrion , in vitro
In activated immune cells, differentiation and function are determined by cell type-specific modifications of metabolic patterns. After traumatic brain injury both immune cell activation and suppression were reported. Therefore, we sought to explore immune cell energy metabolism in a long-term, resuscitated porcine model of acute subdural hematoma (ASDH)-induced acute brain injury devoid of impaired systemic hemodynamics and oxygen transport.Before and up to 50 h after induction of ASDH, peripheral blood mononuclear cells (PBMCs) were separated by density gradient centrifugation, and cell metabolism was analyzed using high-resolution respirometry for mitochondrial respiration and electron spin resonance for reactive oxygen species production. After incubation with stable isotope-labeled 1,2-13C2-glucose or 13C5-glutamine, distinct labeling patterns of intermediates of glycolysis or tricarboxylic acid (TCA) cycle and 13CO2 production were measured by gas chromatography-mass spectroscopy. Principal component analysis was followed by a varimax rotation on the covariance across all measured variables and all measured time points.After ASDH induction, average PBMC metabolic activity remained unaffected, possibly because strict adherence to intensive care unit guidelines limited trauma to ASDH induction without any change in parameters of systemic hemodynamics, oxygen transport, and whole-body metabolism. Despite decreased glycolytic activity fueling the TCA cycle, the principal component analysis indicated a cell type-specific activation pattern with biosynthetic and proliferative characteristics.