z-logo
open-access-imgOpen Access
Generate the scale-free brain music from BOLD signals
Author(s) -
Jiarui Lu,
Song Guo,
Mingming Chen,
Weixia Wang,
Hua Yang,
Daqing Guo,
Dezhong Yao
Publication year - 2018
Publication title -
medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 148
eISSN - 1536-5964
pISSN - 0025-7974
DOI - 10.1097/md.0000000000009628
Subject(s) - functional magnetic resonance imaging , electroencephalography , brain activity and meditation , neuroscience , eeg fmri , signal (programming language) , brain mapping , pattern recognition (psychology) , artificial intelligence , medicine , computer science , psychology , programming language
Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen–Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon–Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here