
Inter- and Intradigit Somatotopic Map of High-Frequency Vibration Stimulations in Human Primary Somatosensory Cortex
Author(s) -
Mi-Hyun Choi,
Sung-Phil Kim,
Hyung–Sik Kim,
Soon−Cheol Chung
Publication year - 2016
Publication title -
medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 148
eISSN - 1536-5964
pISSN - 0025-7974
DOI - 10.1097/md.0000000000003714
Subject(s) - somatosensory system , index finger , anatomy , medicine , stimulation , phalanx , neuroscience , psychology
Although more about the somatotopic mapping of fingers continues to be uncovered, there is lack of mapping attempts regarding the integration of within-finger and across-finger somatotopic coordinates in Broadmann area (BA) 3. This study aimed to address the issue by finding an inter-/intradigit somatotopic map with high-frequency (250 Hz) vibrotactile stimulation. Functional magnetic resonance imaging (fMRI) data were acquired while stimulation was applied to 3 phalanxes (distal [p1], intermediate [p2], and proximal [p3] phalanx) of 4 fingers (index, middle, ring, and little finger) for a total of 12 finger–phalanx combinations for a human. Inter-, intra-, and inter-/intradigit distances were calculated from peak activation coordinates in BA 3 for each combination. With regard to interdigit dimensions, the somatotopic coordinates proceeded in the lateral-to-medial direction for the index, middle, ring, and little fingers consecutively. This trend is comparable to that generated from low-frequency stimulation modalities (flutter stimulation). The somatotopic distances between fingers were greatest when p1 was compared across fingers. From an intradigit perspective, stimulation on p1, p2, and p3 yielded BA 3 peak coordinates aligned along the anterior-to-posterior and inferior-to-superior directions for all fingers. An inter-/intradigit map exhibited a radially propagating trend of distances calculated with respect to index p1 as a reference point; this provided an integrated view of inter- and intradigit somatotopies, which are traditionally discussed separately. We expect such an inter-/intradigit somatotopic map approach to contribute in generating a comprehensive somatotopic model of fingers.