
Measurement of Malrotation on Direct Radiography in Pediatric Distal Radius Fractures
Author(s) -
Tahir Mutlu Duymuş,
Serhat Mutlu,
Baran Kömür,
Harun Mutlu,
Bülent Yücel,
Atilla Sancar Parmaksızoğlu
Publication year - 2016
Publication title -
medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 148
eISSN - 1536-5964
pISSN - 0025-7974
DOI - 10.1097/md.0000000000003569
Subject(s) - medicine , coronal plane , radiography , sagittal plane , deformity , radius , nuclear medicine , orthodontics , surgery , anatomy , computer security , computer science
The aim of this prospective study was to test a mathematical method of measuring the malrotation of pediatric distal radius fractures (PDRFs) from direct radiographs. A total of 70 pediatric patients who presented at the Emergency Department with a distal radius fracture were evaluated. For 38 selected patients conservative treatment for PDRF was planned. Anteroposterior and lateral radiographs were taken of all of the patients for comparison before and after reduction. Radius bone diameters were measured in the coronal and sagittal planes on the healthy and fractured sides. Using the diameter values on the healthy side and the new diameter values on the fractured side in the rotation formula, the degree of malrotation between the fracture ends was calculated. The mean follow-up period was 13.5 months. Patients’ mean age was 10.00 ± 3.19 years (range, 4–12 years). The rotation degree in the sagittal plane significantly differed between the proximal (26.52°±2.84°) and distal fracture ends (20.96°±2.73°) ( P = 0.001). The rotation degree in the coronal plane significantly differed between the proximal (26.70°±2.38°) and distal fracture ends (20.26°±2.86°) ( P = 0.001). The net rotation deformity of the fracture line was determined to be 5.55°± 3.54° on lateral radiographs and 5.44°± 3.35° on anteroposterior radiographs, no significant difference was observed between measurements ( P >0.05). The malrotation deformity in PDRF occurs with greater rotation in the proximal fragment than in the distal fragment. The net rotation deformity created between the fracture ends can be calculated on direct radiographs. Level of Evidence: Diagnostic, Level II