z-logo
open-access-imgOpen Access
A genetic polymorphism that is associated with mitochondrial energy metabolism increases risk of fibromyalgia
Author(s) -
Miranda A.L. van Tilburg,
Marc Parisien,
Richard G. Boles,
Gillian Drury,
Julian Smith-Voudouris,
Vivek Verma,
Samar Khoury,
Anne Julie Chabot-Doré,
Andrea G. Nackley,
Shad B. Smith,
William E. Whitehead,
Denniz Zolnoun,
Gary D. Slade,
Inna E. Tchivileva,
William Maixner,
Luda Diatchenko
Publication year - 2020
Publication title -
pain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.524
H-Index - 258
eISSN - 1872-6623
pISSN - 0304-3959
DOI - 10.1097/j.pain.0000000000001996
Subject(s) - fibromyalgia , mitochondrial dna , chronic pain , minor allele frequency , heteroplasmy , single nucleotide polymorphism , irritable bowel syndrome , biology , medicine , haplogroup , genetics , genotype , haplotype , bioinformatics , endocrinology , gene , psychiatry
Alterations in cellular energy metabolism have been implicated in chronic pain, suggesting a role for mitochondrial DNA. Previous studies reported associations of a limited number of mitochondrial DNA polymorphisms with specific pain conditions. In this study, we examined the full mitochondrial genomes of people with a variety of chronic pain conditions. A discovery cohort consisting of 609 participants either with or without a complex persistent pain conditions (CPPCs) was examined. Mitochondrial DNA was subjected to deep sequencing for identification of rare mutations, common variants, haplogroups, and heteroplasmy associated with 5 CPPCs: episodic migraine, irritable bowel syndrome, fibromyalgia, vulvar vestibulitis, or temporomandibular disorders. The strongest association found was the presence of the C allele at the single nucleotide polymorphism m.2352T>C (rs28358579) that significantly increased the risk for fibromyalgia (odds ratio [OR] = 4.6, P = 4.3 × 10). This relationship was even stronger in women (OR = 5.1, P = 2.8 × 10), and m.2352T>C was associated with all other CPPCs in a consistent risk-increasing fashion. This finding was replicated in another cohort (OR = 4.3, P = 2.6 × 10) of the Orofacial Pain: Prospective Evaluation and Risk Assessment study consisting of 1754 female participants. To gain insight into the cellular consequences of the associated genetic variability, we conducted an assay testing metabolic reprogramming in human cell lines with defined genotypes. The minor allele C was associated with decreased mitochondrial membrane potential under conditions where oxidative phosphorylation is required, indicating a role of oxidative phosphorylation in pathophysiology of chronic pain. Our results suggest that cellular energy metabolism, modulated by m.2352T>C, contributes to fibromyalgia and possibly other chronic pain conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here