z-logo
open-access-imgOpen Access
Inhibitory Effect of GSPE on RAGE Expression Induced by Advanced Glycation End Products in Endothelial Cells
Author(s) -
Fenglei Zhang,
Haiqing Gao,
Lin Shen
Publication year - 2007
Publication title -
journal of cardiovascular pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.762
H-Index - 100
eISSN - 1533-4023
pISSN - 0160-2446
DOI - 10.1097/fjc.0b013e3181342bfa
Subject(s) - rage (emotion) , glycation , umbilical vein , reactive oxygen species , chemistry , advanced glycation end product , receptor , antioxidant , apoptosis , downregulation and upregulation , pharmacology , microbiology and biotechnology , biochemistry , medicine , in vitro , biology , gene , neuroscience
Advanced glycation end products' (AGEs) engagement of a cell-surface receptor for AGEs (RAGE) has been causally implicated in the pathogenesis of diabetic vascular complications via induction of reactive oxygen species (ROS) and subsequent alteration of many gene expressions, including RAGE itself. Grapeseed proanthocyanidin extract (GSPE), which is a naturally occurring polyphenolic compound, has been reported to possess potent radical-scavenging and antioxidant properties and to display significant cardiovascular protective action. In this study, we investigated whether GSPE could inhibit AGE-induced RAGE expression through interference with ROS generation in human umbilical-vein endothelial cells (HUVECs). AGE-modified bovine serum albumin (AGE-BSA) was prepared by incubating BSA with high-concentration glucose. Stimulation of cultured HUVECs with 200 microg/mL of AGE-BSA significantly enhanced intracellular ROS formation and subsequently upregulated the protein and mRNA expression of RAGE; unmodified BSA and GSPE alone had no effect. However, GSPE preincubation markedly downregulated AGE-induced surface expression of RAGE in a time- and concentration-dependent manner. In AGE-stimulated HUVECs, GSPE also dose-dependently decreased RAGE mRNA levels and inhibited AGE-induced ROS generation at defined time periods. These results demonstrate that GSPE can inhibit enhanced RAGE expression in AGE-exposed endothelial cells by suppressing ROS generation, thereby limiting the AGE-RAGE interaction. Hence, GSPE may have therapeutic potential in the prevention and treatment of vascular complications in diabetic patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here