
Prediction of the Functional Status of the Cochlear Nerve in Individual Cochlear Implant Users Using Machine Learning and Electrophysiological Measures
Author(s) -
Jeffrey Skidmore,
Lei Xu,
Xiuhua Chao,
William J. Riggs,
Angela Pellittieri,
Chloe Vaughan,
Xia Ning,
Ruijie Wang,
Jianfen Luo,
Shuman He
Publication year - 2020
Publication title -
ear and hearing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.577
H-Index - 109
eISSN - 1538-4667
pISSN - 0196-0202
DOI - 10.1097/aud.0000000000000916
Subject(s) - cochlear implant , audiology , logistic regression , regression analysis , linear regression , cochlear nerve , compound muscle action potential , cochlear implantation , post hoc analysis , regression , medicine , statistics , electrophysiology , mathematics , cochlea
This study aimed to create an objective predictive model for assessing the functional status of the cochlear nerve (CN) in individual cochlear implant (CI) users.