z-logo
open-access-imgOpen Access
Machine Learning and Statistical Models to Predict Postpartum Hemorrhage
Author(s) -
Kartik K. Venkatesh,
Robert A. Strauss,
Chad A. Grotegut,
R Philip Heine,
Nancy C. Chescheir,
Jeffrey S. A. Stringer,
David M. Stamilio,
Katherine M Menard,
J. Eric Jelovsek
Publication year - 2020
Publication title -
obstetrics and gynecology (new york. 1953. online)/obstetrics and gynecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.664
H-Index - 220
eISSN - 1873-233X
pISSN - 0029-7844
DOI - 10.1097/aog.0000000000003759
Subject(s) - medicine , logistic regression , lasso (programming language) , random forest , discriminative model , statistics , statistic , press statistic , regression , concordance , regression analysis , machine learning , mathematics , ancillary statistic , computer science , f test , world wide web
To predict a woman's risk of postpartum hemorrhage at labor admission using machine learning and statistical models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here