
Cardiac UCP2 Expression and Myocardial Oxidative Metabolism During Acute Septic Shock in the Rat
Author(s) -
Michael Roshon,
Jeffrey A. Kline,
Lisa R. Thornton,
John A. Watts
Publication year - 2003
Publication title -
shock
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 117
eISSN - 1540-0514
pISSN - 1073-2322
DOI - 10.1097/01.shk.0000055241.25446.5f
Subject(s) - septic shock , shock (circulatory) , sepsis , cardiac output , cardiac function curve , western blot , medicine , endocrinology , cardiology , anesthesia , chemistry , hemodynamics , biochemistry , heart failure , gene
Septic shock decreases cardiac hydraulic work relative to the rate of myocardial oxygen consumption, causing decreased mechanical efficiency (hydraulic work/myocardial oxygen consumption). This study tested whether the mitochondrial uncoupling protein UCP2 was responsible for decreased cardiac mechanical efficiency after polymicrobial septic shock. Sepsis was initiated in ketamine/xylazine-anesthetized rats by cecal ligation and puncture (CLP). Steady-state mRNA content was quantified by Northern blot analysis, and protein content was estimated by western blot. Additional hearts were removed after 12 h and perfused in working mode to measure work (mmHg x mL/min/100 g dry wt) and efficiency (CE = work/oxygen consumption, %). The 72-h mortality rate was 80%, and deaths occurred between 12-32 h. Cardiac work (152 +/- 15, shock vs. 235 +/- 16, control; P < 0.05) and cardiac efficiency (4.0 +/- 0.4 vs. 5.6 +/- 0.3; P < 0.05) were significantly decreased when hearts were isolated 12 h after CLP. Myocardial UCP2 mRNA expression was increased by 52% (12 h) compared with control hearts; however, there was no detectable UCP2 protein in mitochondria isolated from either control or septic hearts.