
INVESTIGATING THE QUALITY OF MACHINE LEARNING RESEARCH AND REPORTING IN HYPERTENSION
Author(s) -
Clea du Toit,
Tran Tran,
Sachin Aryal,
Stefanie Lip,
Ishan Manandhar,
Robert Sykes,
Harsha Pattnaik,
Neha Deo,
Safaa Alsanosi,
Aristeidis Sionakidis,
Nhu Ngoc Le,
Linsay McCallum,
Dhruven Mehta,
Maria Kassi,
Maggie Rostron,
Leah Stevenson,
Ramakumar Tummala,
Rahul Kashyap,
Bina Joe,
Sandosh Padmanabhan
Publication year - 2022
Publication title -
journal of hypertension
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.249
H-Index - 172
eISSN - 1473-5598
pISSN - 0263-6352
DOI - 10.1097/01.hjh.0000835956.81410.5e
Subject(s) - checklist , medicine , context (archaeology) , delphi method , medline , delphi , demographics , quality (philosophy) , medical physics , medical education , artificial intelligence , psychology , computer science , paleontology , demography , sociology , political science , law , cognitive psychology , biology , philosophy , epistemology , operating system