z-logo
open-access-imgOpen Access
Mildronate, a Novel Fatty Acid Oxidation Inhibitor and Antianginal Agent, Reduces Myocardial Infarct Size Without Affecting Hemodynamics
Author(s) -
Casilde Sesti,
Boris Z. Simkhovich,
Ivars Kalvinsh,
Robert A. Kloner
Publication year - 2006
Publication title -
journal of cardiovascular pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.762
H-Index - 100
eISSN - 1533-4023
pISSN - 0160-2446
DOI - 10.1097/01.fjc.0000211732.76668.d2
Subject(s) - medicine , ventricle , hemodynamics , ischemia , myocardial infarction , anesthesia , coronary occlusion , heart rate , pharmacology , cardiology , blood pressure
Mildronate is a fatty acid oxidation inhibitor approved as an antianginal drug in parts of Europe. We carried out the first study to determine whether a 10-day course of mildronate could reduce myocardial infarct size (IS) during acute myocardial ischemia. Sprague Dawley rats received 200 mg/kg/d of mildronate (treated group, n = 16) or sterile water (control group, n = 14) subcutaneously for 10 days before ischemia-reperfusion. Rats were then subjected to 45 minutes of left coronary artery occlusion and 2 hours of reperfusion. The 2 groups had identical areas at risk: treated 38 +/- 3%; controls 38 +/- 2%. The amount of necrosis was smaller in the mildronate group at 16 +/- 2% of the left ventricle versus controls, 22 +/- 2% (P = 0.05); and for any amount of risk >25%, necrosis was smaller in the treated group (P = 0.0035). Myocardial IS (% of risk zone) was 43+/-3% in the mildronate-treated rats, and 57+/-4% in controls (P = 0.004). During occlusion, there were no differences between the 2 groups in heart rate (216 +/- 12 bpm, mildronate and 210 +/- 9 bpm, control), in mean arterial pressure (60 +/- 2 mm Hg, mildronate and 64 +/- 3 mm Hg, control) or in the frequency of arrhythmias. Our study for the first time demonstrated that a 10-day treatment with mildronate reduced myocardial IS in an experimental model of acute myocardial ischemia, without any effect on hemodynamics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here