z-logo
open-access-imgOpen Access
Pravastatin Restores DDAH Activity and Endothelium-Dependent Relaxation of Rat Aorta After Exposure to Glycated Protein
Author(s) -
Qingfeng Yin,
Yan Xiong
Publication year - 2005
Publication title -
journal of cardiovascular pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.762
H-Index - 100
eISSN - 1533-4023
pISSN - 0160-2446
DOI - 10.1097/01.fjc.0000159642.44523.7f
Subject(s) - pravastatin , aorta , nitrite , endothelium , malondialdehyde , endothelial dysfunction , medicine , chemistry , endocrinology , bovine serum albumin , chelerythrine , biochemistry , oxidative stress , nitrate , protein kinase c , enzyme , cholesterol , organic chemistry
This study was designed to investigate whether glycated bovine serum albumin (AGE-BSA) inhibits dimethylarginine dimethylaminohydrolase (DDAH) activity to contribute to its adverse effect on endothelium-dependent relaxation in rat aorta, and whether pravastatin reverses the inhibition of DDAH activity and endothelial dysfunction induced by AGE-BSA. Endothelium-dependent relaxation of aortic rings was measured by isometric tension recording, and DDAH activity, and the contents of nitrite/nitrate as well as malondialdehyde (MDA) in aortic tissue were determined after exposure of Sprague-Dawley rat aorta to AGE-BSA (1.70 mmol/L) for 60 minutes in the presence or absence of pravastatin. In comparison with control, both endothelium-dependent relaxation and DDAH activity (0.032 +/- 0.002 versus 0.095 +/- 0.003 U/g protein, n = 5, P < 0.01) were significantly inhibited in isolated rat aorta after exposure to AGE-BSA, which was accompanied by decreases of nitrite/nitrate contents and elevations of MDA levels in aorta. Treatment with pravastatin (1 mmol/L) not only prevented the inhibition of endothelial function but also reversed the decrease of DDAH activity induced by AGE-BSA and normalized the alterations in nitrite/nitrate and MDA contents. Similar effects were observed when rat aorta exposed to AGE-BSA in the presence of antioxidant pyrrolidine dithiocharbamate (PDTC, 30 micromol/L) or protein kinase C inhibitor chelerythrine (1 micromol/L). These results suggested that decreased DDAH activity may be involved in endothelial dysfunction of rat aorta induced by AGE-BSA, and that pravastatin restores DDAH activity and endothelium-dependent relaxation after aorta exposure to AGE-BSA, which may be secondary to its antioxidative effects.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here