Premium
Alcohol Consumption and the Body's Biological Clock
Author(s) -
Spanagel Rainer,
Rosenwasser Alan M.,
Schumann Gunter,
Sarkar Dipak K.
Publication year - 2005
Publication title -
alcoholism: clinical and experimental research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 153
eISSN - 1530-0277
pISSN - 0145-6008
DOI - 10.1097/01.alc.0000175074.70807.fd
Subject(s) - per2 , circadian rhythm , circadian clock , suprachiasmatic nucleus , neurochemical , biology , clock , neuroscience , glutamatergic , endocrinology , hypothalamus , medicine , glutamate receptor , genetics , receptor
This review summarizes new findings on the bidirectional interactions between alcohol and the clock genes, underlying the generation of circadian rhythmicity. At the behavioral level, both adult and perinatal ethanol treatments alter the free‐running period and light response of the circadian clock in rodents; genetic ethanol preference in alcohol‐preferring rat lines is also associated with alterations in circadian pacemaker function. At the neuronal level, it has been shown that ethanol consumption alters the circadian expression patterns of period (per) genes in various brain regions, including the suprachiasmatic nucleus. Notably, circadian functions of β‐endorphin–containing neurons that participate in the control of alcohol reinforcement become disturbed after chronic alcohol intake. In turn, per2 gene activity regulates alcohol intake through its effects on the glutamatergic system through glutamate reuptake mechanisms and thereby may affect a variety of physiological processes that are governed by our internal clock. In summary, a new pathologic chain has been identified that contributes to the negative health consequences of chronic alcohol intake. Thus, chronic alcohol intake alters the expression of per genes, and, as a consequence, a variety of neurochemical and neuroendocrine functions become disturbed. Further steps in this pathologic chain are alterations in physiological and immune functions that are under circadian control, and, as a final consequence, addictive behavior might be triggered or sustained by this cascade.