
What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models
Author(s) -
Michael A. Babyak
Publication year - 2004
Publication title -
psychosomatic medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.62
H-Index - 187
eISSN - 1534-7796
pISSN - 0033-3174
DOI - 10.1097/00006842-200405000-00021
Subject(s) - overfitting , spurious relationship , computer science , set (abstract data type) , artificial intelligence , machine learning , inference , logistic regression , information criteria , data set , econometrics , model selection , data mining , mathematics , artificial neural network , programming language