
Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences
Author(s) -
Anthony P. Marsh,
Philip E. Martin
Publication year - 1997
Publication title -
medicine and science in sports and exercise
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.703
H-Index - 224
eISSN - 1530-0315
pISSN - 0195-9131
DOI - 10.1097/00005768-199709000-00016
Subject(s) - cadence , cycling , mathematics , zoology , physical therapy , medicine , physical medicine and rehabilitation , biology , history , archaeology
To determine the effects of cycling experience, fitness level, and power output on preferred and most economical cycling cadences: 1) the preferred cadence (PC) of 12 male cyclists, 10 male runners, and 10 less-trained male noncyclists was determined at 75, 100, 150, 200, and 250 W for cyclists and runners and 75, 100, 125, 150, and 175 W for the less-trained group; and 2) steady-state aerobic demand was determined at six cadences (50, 65, 80, 95, 110 rpm and PC) at 100, 150, and 200 W for cyclists and runners and 75, 100, and 150 W for less-trained subjects. Cyclists and runners (VO2max: 70.7 +/- 4.1 and 72.5 +/- 2.2 mL.kg-1.min-1, respectively) maintained PC between 90 and 100 rpm at all power outputs and both groups selected similar cadences at each power output. In contrast, the less-trained group (VO2max = 44.2 +/- 2.8 mL.kg-1.min-1) selected lower cadences at all common power outputs and reduced cadence from approximately 80 rpm at 75 W to 65 rpm at 175 W. The preferred cadences of all groups were significantly higher than their respective most economical cadences at all power outputs. Changes in power output had little effect on the most economical cadence, which was between 53.3 and 59.9 rpm, in all groups. It was concluded that cycling experience and minimization of aerobic demand are not critical determinants of PC in well-trained individuals. It was speculated that less-trained noncyclists, who cycled at a higher percentage of VO2max, may have selected lower PC to reduce aerobic demand.