
The Spring-driven Implantable Pump A Low-cost Alternative
Author(s) -
Bruce D. Wigness,
Frank D. Dorman,
Thomas Rohde,
Hēnry Buchwald
Publication year - 1992
Publication title -
asaio journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.961
H-Index - 66
eISSN - 1538-943X
pISSN - 1058-2916
DOI - 10.1097/00002480-199207000-00075
Subject(s) - spring (device) , elastomer , welding , materials science , biomedical engineering , environmental science , computer science , mechanical engineering , medicine , composite material , engineering
In the current era of cost containment in medicine, manufacturing economics have become increasingly important. The authors devised an implantable pump powered by spring force from an elastomeric Belleville washer, which is also the outer flexible wall of the drug reservoir. Use of formed and injection molded parts provides for low-cost manufacturing, in contrast to the precision welded alternative designs. Additional advantages include insensitivity to changes in ambient temperature and pressure. Finite element modeling of the elastomer spring allows prediction of the effects of parameter changes on performance, so that expansions and reductions of scale can be made without compromising the uniform spring rate of the device. A concern that subcutaneous fibrous encapsulation might markedly alter reservoir pressure was not supported by experimental data. In a unit implanted subcutaneously in a dog, reservoir pressures measured over a 4 year period were stable. This new, simple, implantable infusion pump can serve as an economical vehicle for prolonged parenteral drug treatment of ambulatory subjects in circumstances where continuous single-rate infusion is appropriate.