
Multiple Organ Failure Pathophysiology and Potential Future Therapy
Author(s) -
Edwin A. Deitch
Publication year - 1992
Publication title -
annals of surgery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.153
H-Index - 309
eISSN - 1528-1140
pISSN - 0003-4932
DOI - 10.1097/00000658-199208000-00002
Subject(s) - medicine , intensive care medicine , intensive care unit , organ system , critically ill , limiting , critical illness , intensive care , bioinformatics , disease , pathology , biology , mechanical engineering , engineering
Multiple organ failure (MOF) has reached epidemic proportions in most intensive care units and is fast becoming the most common cause of death in the surgical intensive care unit. Furthermore, in spite of the development of successive generations of new and more powerful antibiotics and increasing sophisticated techniques of organ support, our ability to salvage patients once MOF has become established has not appreciably improved over the last two decades. Clearly, new therapeutic strategies aimed at preventing or limiting the development of the physiologic abnormalities that induce organ failure are needed to improve survival in these critically ill patients. Based on our rapidly increasing knowledge of the mechanisms of MOF and the fruits of molecular biology, a number of new therapeutic approaches are in various stages of development. To effectively use these new therapeutic options as they become available, it is necessary to have a clear understanding of the pathophysiology of MOF. Thus, the goals of this review are to integrate the vast amount of new information on the basic biology of MOF and to focus special attention on the potential therapeutic consequences of these recent advances in our understanding of this complex and perplexing syndrome.