
The Role of Electrostatic Interactions in Governing Anesthetic Action on the Torpedo Nicotinic Acetylcholine Receptor
Author(s) -
Douglas E. Raines,
Robert Claycomb
Publication year - 2002
Publication title -
anesthesia and analgesia/anesthesia and analgesia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.404
H-Index - 201
eISSN - 1526-7598
pISSN - 0003-2999
DOI - 10.1097/00000539-200208000-00021
Subject(s) - hydrogen bond , dissociation constant , chemistry , anesthetic , agonist , acetylcholine receptor , nicotinic agonist , stereochemistry , biophysics , receptor , medicine , biochemistry , organic chemistry , molecule , biology , anesthesia
Isoflurane and normal alkanols reduce the apparent agonist dissociation constant (Kd) of the nicotinic acetylcholine receptor (nAChR) at clinically relevant concentrations, whereas cyclopropane and butane do not. This suggests that electrostatic (hydrogen bonding and/or dipolar) interactions modulate anesthetic potency in this model receptor system. To further define the nature of these interactions, we quantified the potencies with which a heterologous group of general anesthetics reduces the nAChR's apparent Kd for acetylcholine. We assessed the importance that an anesthetic's molecular volume, ability to donate a hydrogen bond (hydrogen bond acidity), ability to accept a hydrogen bond (hydrogen bond basicity), and dipole moment play in determining aqueous potency. We found that aqueous anesthetic potency increases with molecular volume and decreases with hydrogen bond basicity but is unaffected by dipole moment and hydrogen bond acidity. These results suggest that anesthetics reduce the apparent agonist Kd of the nAChR by binding to a site that has a dipolarity and ability to accept hydrogen bonds that are similar to those of water, but a hydrogen bond-donating capacity that is less.