Premium
Early activation of fibroblasts is required for kidney repair and regeneration after injury
Author(s) -
Zhou Dong,
Fu Haiyan,
Liu Shijia,
Zhang Lu,
Xiao Liangxiang,
Bastacky Sheldon I.,
Liu and Youhua
Publication year - 2019
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.201900651rr
Subject(s) - cyclopamine , acute kidney injury , kidney , regeneration (biology) , medicine , fibroblast , sonic hedgehog , cancer research , pathology , inflammation , microbiology and biotechnology , endocrinology , biology , signal transduction , cell culture , genetics
Acute kidney injury (AKI) is a devastating condition with high morbidity and mortality. AKI is characterized by tubular injury, inflammation, and vascular impairment. However, the role of interstitial fibroblasts in the pathogenesis of AKI is largely unknown. Here, we show that fibroblasts were activated, as defined by vimentin expression, at 1 h after AKI triggered by ischemia‐reperfusion injury (IRI). They rapidly entered the cell cycle with Ki‐67‐positive staining, which started at 1 h and peaked at 12 h after IRI, whereas tubular cell proliferation peaked at 3 d. The trigger for such an early activation of fibroblasts was identified as sonic hedgehog (Shh), which was rapidly induced in renal tubules and could target interstitial fibroblasts. Tubule‐specific knockout of Shh in mice inhibited fibroblast activation and aggravated kidney injury and functional decline after IRI. Likewise, pharmacologic inhibition of Shh signaling with cyclopamine also hindered fibroblast activation and exacerbated kidney damage. These studies uncover that tubule‐derived Shh triggers the early activation of fibroblasts, which is required for kidney repair and regeneration. Our findings for the first time illustrate a previously unrecognized importance of interstitial fibroblasts in conferring renal protection in AKI.—Zhou, D., Fu, H., Liu, S., Zhang L., Xiao, L., Bastacky, S. I., Liu, Y. Early activation of fibroblasts is required for kidney repair and regeneration after injury. FASEB J. 33, 12576–12587 (2019). www.fasebj.org