z-logo
Premium
Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage
Author(s) -
Timpano Sara,
Guild Brianna D.,
Specker Erin J.,
Melanson Gaelan,
Medeiros Philip J.,
Sproul Shan L. J.,
Uniacke James
Publication year - 2019
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.201802279r
Subject(s) - mitochondrial dna , viability assay , microbiology and biotechnology , morphology (biology) , dna damage , cell metabolism , cell , dna , chemistry , biology , biochemistry , genetics , gene
ABSTRACT Multicellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal, but this is difficult to assess without a comparison at physiologic oxygen. Here, we examined the effects of culturing human cells throughout the spectrum of oxygen availability on oxidative damage to macromolecules, viability, proliferation, the antioxidant and DNA damage responses, metabolism, and mitochondrial fusion and morphology. We surveyed 4 human cell lines cultured for 3 d at 7 oxygen conditions between 1 and 21% O 2 . We show that oxygen levels and cellular benefit are not inversely proportional, but the benefit peaks within the physioxic range. Normoxic cells are in a perpetual state of responding to damaged macromolecules and mitochondrial networks relative to physioxic cells, which could compromise an investigation. These data contribute to the concept of an optimal oxygen availability for cell culture in the physioxic range where the oxygen is not too high to reduce oxidative damage, and not too low for efficient oxidative metabolism, but just right: the Goldiloxygen zone.—Timpano, S., Guild, B. D., Specker, E. J., Melanson, G., Medeiros, P. J., Sproul, S. L. J., Uniacke, J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J. 33, 5716–5728 (2019). www.fasebj.org

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here