Premium
Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk
Author(s) -
Quilter Claire R.,
Cooper Wendy N.,
Cliffe Kerry M.,
Skinner Benjamin M.,
Prentice Philippa M.,
Nelson LaTasha,
Bauer Julien,
Ong Ken K.,
Constância Miguel,
Lowe William L.,
Affara Nabeel A.,
Dunger David B.
Publication year - 2014
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.14-255240
Subject(s) - gestational diabetes , offspring , birth weight , type 2 diabetes , pregnancy , epigenetics , diabetes mellitus , medicine , intrauterine growth restriction , dna methylation , endocrinology , fetus , physiology , obstetrics , biology , gestation , gene , genetics , gene expression
Size at birth, postnatal weight gain, and adult risk for type 2 diabetes may reflect environmental exposures during developmental plasticity and may be mediated by epigenetics. Both low birth weight (BW), as a marker of fetal growth restraint, and high birth weight (BW), especially after gestational diabetes mellitus (GDM), have been linked to increased risk of adult type 2 diabetes. We assessed DNA methylation patterns using a bead chip in cord blood samples from infants of mothers with GDM (group 1) and infants with prenatal growth restraint indicated by rapid postnatal catch‐up growth (group 2), compared with infants with normal postnatal growth (group 3). Seventy‐five CpG loci were differentially methylated in groups 1 and 2 compared with the controls (group 3), representing 72 genes, many relevant to growth and diabetes. In replication studies using similar methodology, many of these differentially methylated regions were associated with levels of maternal glucose exposure below that defined by GDM [the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study] or were identified as changes observed after randomized periconceptional nutritional supplementation in a Gambian cohort characterized by maternal deprivation. These studies provide support for the concept that similar epigenetic modifications may underpin different prenatal exposures and potentially increase long‐term risk for diseases such as type 2 diabetes.—Quilter, C. R., Cooper, W. N., Cliffe, K. M., Skinner, B. M., Prentice, P. M., Nelson, L., Bauer, J., Ong, K. K., Constância, M., Lowe, W. L., Affara, N. A., Dunger, D. B., Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J. 28, 4868–4879 (2014). www.fasebj.org