Premium
Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course
Author(s) -
Anderson Olivia S.,
Peterson Karen E.,
Sanchez Brisa N.,
Zhang Zhenzhen,
Mancuso Peter,
Dolinoy Dana C.
Publication year - 2013
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.12-223545
Subject(s) - offspring , leptin , endocrinology , hormone , medicine , obesity , adiponectin , physiology , biology , pregnancy , insulin resistance , genetics
The development of adult‐onset diseases is influenced by perinatal exposure to altered environmental conditions. One such exposure, bisphenol A (BPA), has been associated with obesity and diabetes, and consequently labeled an obesogen. Using an isogenic murine model, we examined the effects of perinatal exposure through maternal diet to 50 ng ( n =20), 50 μg ( n =21), or 50 mg ( n =18) BPA/kg diet, as well as controls ( n =20) on offspring energy expenditure, spontaneous activity, and body composition at 3, 6, and 9 mo of age, and hormone levels at 9 and 10 mo of age. Overall, exposed females and males exhibited increased energy expenditure ( P <0.001 and 0.001, respectively) throughout the life course. In females, horizontal and vertical activity increased ( P =0.07 and 0.06, respectively) throughout the life course. Generally, body composition measures were not different throughout the life course in exposed females or males (all P >0.44), although body fat and weight decreased in exposed females at particular ages (all P <0.08). Milligram‐exposed females had improved glucose, insulin, adiponectin, and leptin profiles (all P <0.10). Thus, life‐course analysis illustrates that BPA is associated with hyperactive and lean phenotypes. Variability across studies may be attributable to differential exposure duration and timing, dietary fat and phytoestrogen content, or lack of sophisticated phenotyping across the life course.—Anderson, O.S., Peterson, K.E., Sanchez, B.N., Zhang, Z., Mancuso, P., Dolinoy, D.C. Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course. FASEB J. 27, 1784–1792 (2013). www.fasebj.org