Premium
A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer's disease phenotypes in model mice
Author(s) -
Shukla Varsha,
Zheng YaLi,
Mishra Santosh K.,
Amin Niranjana D.,
Steiner Joseph,
Grant Philip,
Kesavapany Sashi,
Pant Harish C.
Publication year - 2013
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.12-217497
Subject(s) - cyclin dependent kinase 5 , activator (genetics) , kinase , cyclin dependent kinase , alzheimer's disease , neuroprotection , chemistry , biology , microbiology and biotechnology , cancer research , medicine , neuroscience , apoptosis , disease , cell cycle , protein kinase a , biochemistry , cyclin dependent kinase 2 , receptor
Alzheimer's disease (AD), one of the leading neurodegenerative disorders of older adults, which causes major socioeconomic burdens globally, lacks effective therapeutics without significant side effects. Besides the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs), it has been reported that cyclin‐dependent kinase 5 (Cdk5), a critical neuronal kinase, is hyperactivated in AD brains and is, in part, responsible for the above pathology. Here we show that a modified truncated 24‐aa peptide (TFP5), derived from the Cdk5 activator p35, penetrates the blood‐brain barrier after intraperitoneal injections, inhibits abnormal Cdk5 hyperactivity, and significantly rescues AD pathology (up to 70–80%) in 5XFAD AD model mice. The mutant mice, injected with TFP5 exhibit behavioral rescue, whereas no rescue was observed in mutant mice injected with either saline or scrambled peptide. However, TFP5 does not inhibit cell cycle Cdks or normal Cdk5/p35 activity, and thereby has no toxic side effects (even at 200 mg/kg), a common problem in most current therapeutics for AD. In addition, treated mice displayed decreased inflammation, amyloid plaques, NFTs, cell death, and an extended life by 2 mo. These results suggest TFP5 as a potential therapeutic, toxicity‐free candidate for AD.—Shukla, V., Zheng, Y.‐L., Mishra, S. K., Amin, N. D., Steiner, J., Grant, P., Kesavapany, S., Pant, H. C. A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer's disease phenotypes in model mice. FASEB J. 27, 174–186 (2013). www.fasebj.org