z-logo
Premium
Acclimatization of skeletal muscle mitochondria to high‐altitude hypoxia during an ascent of Everest
Author(s) -
Levett Denny Z.,
Radford Elizabeth J.,
Menassa David A.,
Graber E. Franziska,
Morash Andrea J.,
Hoppeler Hans,
Clarke Kieran,
Martin Daniel S.,
FergusonSmith Anne C.,
Montgomery Hugh E.,
Grocott Michael P. W.,
Murray Andrew J.
Publication year - 2012
Publication title -
the faseb journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.709
H-Index - 277
eISSN - 1530-6860
pISSN - 0892-6638
DOI - 10.1096/fj.11-197772
Subject(s) - mitochondrial biogenesis , ucp3 , mitochondrion , hypoxia (environmental) , skeletal muscle , acclimatization , oxidative stress , effects of high altitude on humans , biology , oxidative phosphorylation , microbiology and biotechnology , uncoupling protein , tfam , endocrinology , chemistry , oxygen , biochemistry , anatomy , genetics , organic chemistry , brown adipose tissue , obesity
Ascent to high altitude is associated with a fall in the partial pressure of inspired oxygen (hypobaric hypoxia). For oxidative tissues such as skeletal muscle, resultant cellular hypoxia necessitates acclimatization to optimize energy metabolism and restrict oxidative stress, with changes in gene and protein expression that alter mitochondrial function. It is known that lowlanders returning from high altitude have decreased muscle mitochondrial densities, yet the underlying transcriptional mechanisms and time course are poorly understood. To explore these, we measured gene and protein expression plus ultrastructure in muscle biopsies of lowlanders at sea level and following exposure to hypobaric hypoxia. Subacute exposure (19 d after initiating ascent to Everest base camp, 5300 m) was not associated with mitochondrial loss. After 66 d at altitude and ascent beyond 6400 m, mitochondrial densities fell by 21%, with loss of 73% of subsarcolemmal mitochondria. Correspondingly, levels of the transcriptional coactivator PGC‐1α fell by 35%, suggesting down‐regulation of mitochondrial biogenesis. Sustained hypoxia also decreased expression of electron transport chain complexes I and IV and UCP3 levels. We suggest that during subacute hypoxia, mitochondria might be protected from oxidative stress. However, following sustained exposure, mitochondrial biogenesis is deactivated and uncoupling down‐regulated, perhaps to improve the efficiency of ATP production.—Levett, D. Z., Radford, E. J., Menassa, D. A., Graber, E. F., Morash, A. J., Hoppeler, H., Clarke, K., Martin, D. C., Ferguson‐Smith, A. C., Montgomery, H. E., Grocott, M. P. W., Murray, A. J., Caudwell Xtreme Everest Research Group. Acclimatization of skeletal muscle mitochondria to high‐altitude hypoxia during an ascent of Everest. FASEB J. 26, 1431‐1441 (2012). www.fasebj.org

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here